

ILLUSION TRICKS:
Manipulating Sandbox Reports
for Fun and Profit

Viviane Zwanger, Dr. Elmar Padilla

Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE

Bonn, April 2018

Fraunhofer FKIE Manipulating Sandbox Reports 3 | 15

Content

1 Introduction 4

1.1 Background 4

1.2 Contacting the Vendors 5

2 How It Works 6

2.1 Technical Implementation Details 6

2.2 Our Two Proof of Concept Samples 11

3 Reports 12

4 Final Words 13

5 Provided Material 14

6 Acknowledgements 15

Fraunhofer FKIE Manipulating Sandbox Reports 4 | 15

Introduction

1
Introduction

Commercial sandbox systems are used for different purposes. Presumably well-known
is their use in the field of malware analysis. Analysts run unknown malware, check
what the malware is doing and analyze the observed behavior. Given this, analysts can
conclude whether this is malware, the kind of malware, and maybe even the
identification of the precise family. This is a very important and basic step in malware
analysis.

However, sandbox systems are not only used in malware analysis. Several commercial
sandbox systems are sold as solutions for a company’s network to inspect traffic or as
email filter system. Websites can be opened in advance in a sandbox with the
company’s default browser to see if anything suspicious happens, such as spawning
unrelated processes and similar bad behavior. Files appended to emails can be opened
with standard applications or run within the sandbox solution to see if bad things take
place.

Surprisingly, everybody seems to trust sandbox systems, i.e. considers sandbox reports
the truth. So it was a bit of a surprise (as malware analysts) when we found the reports
might be faked without much effort, and do not necessarily mirror the truth.
Like any other tool, sandboxes can be fooled and circumvented by attackers. But still
we were surprised discovering how easily some sandbox reports could be tricked into
presenting false data. Thus, our conclusion is that one should not trust sandbox reports
too easily – they might have been manipulated by the running malware. More
generally spoken, sandboxes should be seen as one part of the solution when fighting
against malware attacks, but not as the single solution.

1.1
Background

In the first days of October 2017, we wrote an internal tool to monitor, observe and
change IOCTLs and their associated data1 values used in device I/O to tell the kernel to
execute certain functions without requiring a kernel driver. The idea was to catch the
IOCTL codes originating from malware and change the associated data in input and
output buffer in userspace.

The tool worked as intended, but as it was run in a sandbox, we observed that the
report was wrong. It reported the original programmed actions the malware intended
to do, but we knew it could not be true, since the actions had been changed in the
meantime by our post-modification code and we were also able to observe the effect
of our modification in reality, e.g., a connect to a server controlled by us or a file
created on the hard disk.

--
1 I/O Control Codes are numerical values used in device I/O to tell the kernel to execute certain mostly

device-related functions.

Fraunhofer FKIE Manipulating Sandbox Reports 5 | 15

Introduction

We wrote several proof of concept binaries and began to test in a more systematic
fashion, which will be detailed out in the following. We realized that this kind of post-
modification might not affect only device I/O, but other types of actions such as
opening, reading and writing files or read/write to registry. Later, we checked other
commercial sandbox systems and positively found that a number of them were
affected as well, where »affected« means the sandbox report lists actions that never
happened, but does not list actions, which really happened. In other words, the exact
opposite of a working sandbox.

1.2
Contacting the Vendors

We checked 8 sandbox vendors (BlueCoat/Symantec, VM-Ray, Lastline, Huawei,
ThreatTrackSecurity/Vipre, VxStreams, JoeSandbox and Cuckoo as the only non-
commercial sandbox) to which we had access to and reported them our findings on 11
October 2017.

4 sandbox vendors were vulnerable, one was partially affected, and 3 were unaffected.
Only one of the vulnerable vendors fixed the bug in February 2018. We were also
interested in testing the sandbox solutions of Fortinet, Barracuda, Fireeye, and Palo
Alto, but when contacting them, they did not respond or were not interested in
checking their sandbox solutions, insisting that their sandbox solutions worked
correctly.

In all the time, we received very different reactions from the vendors and as mentioned,
from others we never received any reply. We promised the contacted vendors to not
divulge who was vulnerable and who not. We do publish our proof of concept code
(see chapter 5 »Provided Material«) and we explain the technique. This makes it
possible for everybody to take our code, run it on a sandbox and check the sandbox
reports. Thus, everybody can check whether their sandbox is affected.

In the following, we explain how it works, present our two proof of concept samples.
We also created several example reports with custom layout, the latter being due to
anonymization. The report templates were created from scratch and do not disclose
vendor identity, but contain real data.

Fraunhofer FKIE Manipulating Sandbox Reports 6 | 15

How It Works

2
How It Works

What we did is very simple and does not require expert knowledge. We let the
application (or malware) make an API call. During the API call, code from several
libraries is executed till ntdll. In ntdll, the corresponding system call number is pushed
into the register and further execution passes into kernel space. We overwrite the code
bytes in ntdll with a jump instruction, which later makes executaion flow jump to our
post-modification code. The modification routine changes the parameters as desired,
then restores the original bytes on ntdll and jumps back. Normal execution continues
and it next passes into kernel space.

Several sandbox systems seem to capture the parameters of the API call only at the
point where the API function is initially called. If something changes the original
parameters unexpectedly during API call processing in the libraries, affected sandboxes
won’t notice and still print the original values. This is a bad mistake. It allows a malware
essentially to control what is printed into the sandbox report.

2.1
Technical Implementation Details

In the following code example (see chapter 5 »Provided Material«), we let a
malware/application connect to a fake ip address and a fake port. During API call
processing, these parameters are changed post-hoc to the real IP address and the real
port number. The actual code execution flow is shown in Fig. 1, together with a detailed
walkthrough. The implementation details as given by the walkthrough are not needed
for understanding, but to reproduce our proof of concept samples from source. For
readers not interested in reproduction of our code, reading the walkthrough is not
necessary.

Fraunhofer FKIE Manipulating Sandbox Reports 7 | 15

How It Works

main.c

 // Create a socket

 if((s = socket(AF_INET , SOCK_STREAM , 0)) == INVALID_SOCKET)

 {

 printf("Could not create socket : %d\n" , WSAGetLastError());

 return 1;

 }

 printf("Socket created.\n");

 trap_setup(); // <== This sets up the trap for post-hoc modification

 server.sin_family = AF_INET;

 server.sin_addr.s_addr = inet_addr(fakeIP); // uses fake IP address

 server.sin_port = htons(fakePort); // uses fake port number

 // Connect to remote server

 if (connect(s , (struct sockaddr *)&server , sizeof(server)) < 0)

 {

 printf("Connect error.\n");

 return 1;

 }

 printf("Connected.\n");

 [...]

In main.c, the program intends to connect to fakeIP and fakePort. The parameters will
be changed to different values during the API call processing, e.g., to realIP and
realPort. To achieve this, code in ntdll is modified. trap_setup() is a routine which sets
up a shellcode trap triggered in ntdll (see trap_setup() pseudocode below). The 6 byte
shellcode trap will be removed afterwards, which makes it a one-time event. Despite of
using only a single call in the main(), the parameter-changing code can bootstrap itself
multiple times afterwards by shifting portions of shellcode through various locations
without requiring any new call in main(). This is further explained in Fig. 1 and
walkthrough.

Fraunhofer FKIE Manipulating Sandbox Reports 8 | 15

How It Works

trap_setup()

// Prepare shellcode buffer. Buffer starts with ‘ff 15’ (call dword_address).

memcpy(&(buffer_shellcode[2]),&ptr_ephemeral_call);

// fills in address, which is the ephemeral ntdll twin function.

// Optional: do the same for the trap_setup shellcode.

// This saves the original 6 code bytes of ntdll function in ntdll to a buffer.

memcpy(buffer_org_xxfunction, targetedntdllfunction, 6);

Some virtual Protect (+RWE)

// make ntdll (and optionally winsock) writable.

// Overwrite original code bytes in ntdll with 6 byte shellcode call.

memcpy(targetedntdllfunction, buffer_shellcode, 6);

Set back Virtual Protect settings (original setting);

if called by shellcode: subtract 6 from return address;

After trap_setup() is called in main(), a 6 byte call instruction exists in the associated ntdll
function, which in case of winsock.connect() would be NtDeviceIoControlFile(), a 10
parameter function. The target address of the call instruction points to our ephemeral
post-modification routine, a twin of the correspondent ntdll function, which in our
running example takes 11 (1+10) parameters. (See below for comparison).

// Called in CDECL form.

void __cdecl ephemeral_call

 (

 __in DWORD retAddr,

 __in HANDLE FileHandle,

 __in_opt HANDLE Event,

 __in_opt PVOID ApcRoutine,

 __in_opt PVOID ApcContext,

 __out PIO_STATUS_BLOCK IoStatusBlock,

 __in ULONG ControlCode,

 __in PVOID InputBuffer,

 __in ULONG InputBufferLength,

 __out PVOID OutputBuffer,

 __in ULONG OutputBufferLength

);

DWORD WINAPI

NtDeviceIoControlFile

(

 __in HANDLE FileHandle,

 __in_opt HANDLE Event,

 __in_opt PVOID ApcRoutine,

 __in_opt PVOID ApcContext,

 __out PIO_STATUS_BLOCK IoStatusBlock,

 __in ULONG IoControlCode,

 __in PVOID InputBuffer,

 __in ULONG InputBufferLength,

 __out PVOID OutputBuffer,

 __in ULONG OutputBufferLength

);

Ephemeral twin function NtDeviceIoControlFile

The ephemeral ntdll twin function can be generated automatically and adapts the
typedef of its ntdll pendant function, with two notable exceptions (see comparison
above): the first difference is the additional first parameter being the return address of
the caller of the ntdll function, i.e. the caller of NtDeviceIoControlFile(). The second
difference is the function is declared void return type. This allows for clean and elegant
automatic stack restoration and works for any targeted ntdll function, such as
NtCreateFile() or even ZwFsControlFile().

With the trap set up, the malware/application can now safely call its API functions on a
vulnerable sandbox. At ntdll level, it will jump into the ephemeral ntdll twin function,
where it changes the fake parameters into whatever real parameters are desired, returns
and continues normal code execution including the now restored code bytes formerly
overwritten by trap_setup().

Fraunhofer FKIE Manipulating Sandbox Reports 9 | 15

How It Works

Fig. 1: Code execution flow. The action locations are referenced by numbers and explained in the

walkthrough below.

Detailed Walkthrough

1. Winsock.connect() is called from main() with fake parameters.

2. Winsock.connect() calls ntdll.NtDeviceIoControlFile().

3. The 6-byte shellcode earlier placed by trap_setup() is executed.

4. The ephemeral twin function changes the parameters as desired. This is actually
the easy part. Then, it needs to restore the original code bytes of ntdll before
returning to the position where the 6 byte shellcode started, (i.e. return address
– 6). Since the twin function has a compiler-generated stack frame, we can
conveniently subtract the missing 6 bytes from EBP+4 (return address) before
returning.

Now comes the interesting part. Since the ntdll twin function is always declared
__cdecl form and as a void returning function with n+1 parameters, the return
address to winsock.connect(), pushed on the stack when NtDeviceIoControlFile()
was called, is interpreted as first input parameter, followed by the normal n
parameters (i.e., 10 for NtDeviceIoControlFile) of the ntdll function. This is very
important, as it serves two purposes.

The first purpose is the function receives all n parameters of the original ntdll
function. Mathematically, this combination also restores the stack to the state
before the shellcode execution, as if our call never happened, except for the
return address, which needs to be set back for 6 bytes. Thus, all that needs to
be done in total is copying the 6 missing original ntdll bytes back into place and
subtracting 6 from the return address on the stack (at EBP+4). After returning,
no signs will be left and everything will be as if our actions never took place.

Fraunhofer FKIE Manipulating Sandbox Reports 10 | 15

How It Works

The second (optional) purpose takes effect when we want to change parameters
a second (or third) time. Our function will use the first parameter to place a
different 6 byte shellcode on the return code within winsock.connect(), which
calls trap_setup(). This will trigger yet another parameter changing event the
next time connect() is called by the program. If not for the optional feature, all
that needs to be done in total is copying the 6 missing original ntdll bytes back
into place and subtracting 6 from the return address at EBP+4.

5. The ntdll function, i.e. NtDeviceIoControlFile(), is executed with changed
parameters and follows its normal execution path.

6. (Optional) If a new trap was set up, on return to the higher level API library,
winsock.connect() in our running example, the 6 byte shellcode is executed and
trap_setup() is called again, which places another 6 byte shellcode into the ntdll
function … etc. etc. The trap_setup() function receives optional context
knowledge saved by the ntdll twin function, which provides information about
how it is being called, normally or by shellcode. If called by a 6 byte shellcode
call, it will need to restore the stack in similar manner2 as the ephemeral ntdll
twin function. In case it was called by the main() as normal call, nothing needs
to be done additionally.

On vulnerable sandboxes, malware can therefore essentially redefine what is written to
the sandbox report.

For checking purposes, we created two different proof of concept binaries, which we
offer along with their source code (see chapter 5 »Provided Material«). They can be
executed in a sandbox to quickly check whether a given sandbox works correctly or is
affected.

--
2 Questionably, we resorted to using ESP to restore the stack. In principle, this would be avoidable.

Fraunhofer FKIE Manipulating Sandbox Reports 11 | 15

How It Works

2.2
Our Two Proof of Concept Samples

Our API tricksery would not work in a case where non-sandbox methods are used for
generating the report data. Some sandboxes might use pcap data for network-related
report data and some sandboxes might do a complete diff of the whole filesystem
partition by comparing the starting snapshot against the resulting snapshot. Therefore,
we provide at least two independent and different proof of concept examples for testing.
The mentioned external methods of measurements must be kept in mind when looking
at the reports of a sandbox, especially if only one of the proof of concept samples works.

Along with our proof of concept samples, we provide the reference versions, which do
no post-modification at all (trap_setup() is disabled entirely). The reference version show
what the report should have shown if the sandbox would have worked correctly. In
source code, this is achieved by a REFERENCE precompiler switch, which can be set in
config.h. The switch will also comment the post-modification related functions. There is
no way of accidentally triggering the post-modification when compiled for the reference
version.

Sample 1: Network I/O based Proof of Concept
In the default source code, the sample fake-connects to the official University Bonn
website, later this is changed to the real IP and address of a Fraunhofer FKIE controlled
server, which returns a small ASCII art depicting a cat.

The reference version directly connects to the Fraunhofer FKIE controlled server without
detours.

Sample 2: File-based Proof of Concept
In the default source code, the sample fake-creates a file e.txt, which is later changed to
x.exe during API call processing. The file in question is created in the Documents folder
of the user’s home directory.

In the reference version, file x.exe is created directly without detours.

We also created a filesystem control based proof of concept, but this might be too
unintuitive for standard purposes. More important, many sandboxes miss filesystem
control based actions entirely. It might be noteworthy to point out that by using
filesystem control, many sandboxes (and possibly, AV software) are bypassed per se. In
future, we might investigate this possibility. The mentioned sample is available on
demand.

Fraunhofer FKIE Manipulating Sandbox Reports 12 | 15

Reports

3
Reports

As mentioned, we promised to not publish any data stating, which vendor was
vulnerable and which not. It is not trivial to show an example of a vulnerable report in
such a case. We were able to create custom report templates and fill them with the
real data. We publish these reports along with our technical report to give a better
impression how a vulnerable report looks like and what to look for when checking a
sandbox report.

A last thing to mention: concerning the vulnerable sandboxes, there were further
surprises. When we tested different sandbox solutions, we found two commercial
solutions, which were dubbed »super-vulnerable«. Not only did they print actions,
which never happened, but it seems they also lost track of the further associated
execution flow, causing the malware’s follow-up actions to be missing in the report
entirely. As an example, if we would change the IP address and port unexpectedly, they
would lose track of the entire connection, such as data sent and received, whereas
»default vulnerable« sandboxes would simply print wrong data in the report, which
seems less bad.

The sandbox reports can be found in the appended material, together with the source
code and compiled test binaries.

Fraunhofer FKIE Manipulating Sandbox Reports 13 | 15

Final Words

4
Final Words

We unintentionally discovered the possibility of easily manipulating the sandbox report
as malware running on the sandbox. Our results indicate that putting too much trust in
a sandbox might be a dangerous idea. We also suggest more public product tests of
sandbox solutions as it was for example done in 20163.

Our testing was rather incomplete and only included 8 well-known sandbox vendors.
However, half of the tested sandbox vendors were vulnerable to relatively simple
manipulation. We have no idea whether malware authors already use this kind of exploit
for hiding their actions and we did not search for samples in the wild. We furthermore
do not know why some sandboxes are affected and others not, or what kind of logic
exists behind the sandbox software, as we have no insights in the proprietary code of
any commercial sandbox solution. We are however working on a fix for the open source
Cuckoo sandbox.

--
3 https://www.future-security.org/content/dam/future-security/de/doc/2016/FuSec2016_Proceedings-E-

Book.pdf

Fraunhofer FKIE Manipulating Sandbox Reports 14 | 15

Provided Material

5
Provided Material

We provide following material, which can be downloaded as zip archive at
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/Presse/AushebelnSand
box/sandbox_publication.zip.

Sha256:
e7d64828891448fabd2deb61752b468015be5b08c602209e3a69fda0ac6d0e64
(sandbox_publication.zip).

It contains:

1. A readme file, containing the password for the source code and binaries. The

binaries might produce false alerts in antivirus programs, for example due to our
ubiquitous VirtualProtect's against ntdll.

2. The compiled executables for checking the sandbox.

3. The complete source code for building the executables, which has been
documented and referenced in this whitepaper. We provide a makefile for the WDK
7600, which uses the same (nmake) compiler as Visual Studio. Visual Studio can be
used as well, but requires the source code to be imported into Visual Studio. Other
than that, there should be no problems, especially since the WDK has been
incorporated into Visual Studio recently. The file config.h contains the REFERENCE
precompiler switch for either compiling the reference version or the »evil« version.

4. The artificial reports, provided to show the exact difference between a vulnerable

sandbox and an unaffected sandbox.

https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/Presse/AushebelnSandbox/sandbox_publication.zip
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/Presse/AushebelnSandbox/sandbox_publication.zip

Fraunhofer FKIE Manipulating Sandbox Reports 15 | 15

Acknowledgements

6
Acknowledgements

We thank the Bundeswehr Cyber Security Centre for their support. We also thank our
fellow worker Martin Clauß for many useful comments and suggestions as well as his
pseudo C&C.

