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Executive Summary

In this report, 122 currently available third-party home routers are statically analyzed based on
their firmware image to identify trends in adoption of security-related software features. Sim-
ilar to our previous report from 2020 [1], we chose seven vendors selling their devices on the
European retail market.

For all selected vendors, we assume relevance based on perceived public brand recognition and
home router portfolio breadth. All of them offer a variety of budget, mid-tier, and high-end
home router devices – targeting a variety of different retail market customer groups. Although
we do not claim our corpus to be representative for any kind of market distribution, we still
believe our findings to give an important insight on router security.

Analysis data was consolidated on 2022-03-31 by downloading publicly accessible home router
firmware images from all vendor homepages, excluding any end-of-life products.

To gain insight into adoption of security best practices we analyzed the firmware regarding four
security related questions:

■ When did the device receive its last firmware update?

■ What operating system versions are used and how many known vulnerabilities can we
heuristically attribute to these binary findings?

■ Are the included software components compiled with binary hardening techniques?

■ Does the firmware use hard-coded login credentials - and if so, are they easy to guess?

Our fully automated analysis method was able to correctly unpack and analyze 109 of 122
firmware images. All 109 devices contained an embedded Linux operating system, which is the
base of two of our features. The remaining 13 devices are unpacked incorrectly and thus omitted
from further analysis.

In comparison to the 2020 analysis, we observe a positive trend regarding the time since last
firmware update – which can be an indicator of improving device hygiene. However, as we report
varying Linux kernel usage patterns, we show that discovered operating system versions vary
greatly between vendors. Despite the observation that excessively old kernels are less frequently
used, we still encounter a significant amount of version 2.6 Linux kernels and report that more
than 70 % of all discovered kernels reached End-of-Life (EOL) status. Furthermore, publicly
documented kernel vulnerabilities were assigned using a newly developed heuristic that reduces
false positives [2]. This leads to a drastic decrease in reported vulnerability candidates, though
most devices are still assigned at least one potential vulnerability marked as critical and all at least
one marked as high. These candidates should be further examined by vendors and independent
security experts. Due to the changed heuristic, the results for this metric are not comparable to
the 2020 report.

We observe that the adoption of binary hardening techniques is about equal to 2020. However,
a positive trend is that far fewer hard-coded credentials could be found in current firmware
images. Although the total number of such hard-coded credentials is smaller, the number of
weak passwords remains comparable to 2020. About 10 % of devices contain a weak password
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we were able to crack.

The mixed results underline once more that security features are adopted differently in different
devices and across vendors. Although some positive trends can be seen compared to 2020,
there is still room for improvements. Especially Linux versions that do not receive security support
anymore should be replaced. Additionally, modern embedded architectures have support for
binary hardening techniques, which can be included in build processes. Finally, all hard-coded
credentials should be checked on necessity and on their value. At least passwords that are set to
admin, password or root and other guessable values should be replaced by stronger passwords
if it is necessary to store them.

The FACT1 software used for this analysis is open source and can be used to independently
reproduce the results in this report. All vendors under analysis were provided with the results and
report before release and were able to assess them. The results of ensuing vendor discussions
are given in a separate appendix along with our views on the vendor positions. In this document,
all vendors were pseudonymised and their order scrambled in result presentations.

1https://fkie-cad.github.io/FACT_core/
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1 Introduction

1 Introduction

Still a minor topic in IT security when compared to malware and vulnerabilities on general purpose
systems and services, vulnerabilities in networked embedded systems such as COTS network
hardware are increasingly gaining public notice. Both criminal activities such as Mirai-based IoT
botnets and state-sponsored attacks on critical infrastructure expose the large attack surface
brought by these simple network participants. In 2020, we conducted a first survey on the
security level on home routers as a widespread and security-critical embedded system, finding a
high number of issues with commonly distributed hardware of that device class [1].

The motivation for the report remains: Home routers are both accessible directly through the in-
ternet and serve as a gatekeeper between devices on the local network — some of which might
have differing levels of trustworthiness. The ongoing COVID-19 pandemic and its projected
long-term impact on work-from-home practices additionally stress the information security re-
sponsibilities of these devices.

As a fresh look on the state of security in third-party home routers we present a study similar to
[1], with the latest1 firmware for 122 routers currently sold by a set of seven vendors that appear
on European markets. Our updated and improved methodology still builds upon FACT2, which
is able to extract the components from the firmware images, identify the included software and
run a number of analyses on each individual component of the firmware. Based on the analysis
we infer four security-related aspects:

■ When were the devices updated last time?

■ What operating system versions are used and how many known vulnerabilities can we
heuristically attribute to these binary findings?

■ Which exploit mitigation techniques do the vendors use? How often do they activate these
techniques?

■ Are there any hard-coded login credentials? Can these be guessed easily?

Similar to the findings of 2020, the results, as shown in the following sections, indicate areas
of improvement for many devices in the data set that could be extracted correctly. While the
employed static methods do not serve definitive proof of exploitable vulnerabilities, our findings
are to be understood as indicators of potential security issues. Guessable hard-coded credentials
and heuristically attributed vulnerabilities in operating system kernels are candidates that require
further careful, technical, and individual verification through vendors or third-party security ana-
lysts.

The number of hard-coded login credentials is significantly lower than in the 2020 report. Look-
ing specifically at the number of guessable passwords, the number is comparable though, show-
ing no improvement in this most critical aspect. Meanwhile, release cycles have shortened,
especially in regards to the maximum age of the latest update. In 2020, the oldest firmware was
more than five years old and the average age was more than one year. For the current analysis,
half of the devices received an update within the last eight months and the oldest firmware is

1Firmware samples were collected on 2022-03-31.
2https://fkie-cad.github.io/FACT_core/
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1 Introduction

slightly younger than three years. Similarly, the age of the Linux versions in use was improved.
While nearly a fourth of all identified Linux versions was still in the very outdated 2.6 stream,
a general shift towards versions of the 4.x streams is observable. Still, more than 70 % of ker-
nels reached EOL status. With the attribution of known vulnerabilities based on the commonly
used CVE database, our heuristic methodology was largely updated and improved to allow more
reliable results with lower false-positive rates, as we document and demonstrate in [2]. While
this yields a much lower number of attributed critical vulnerabilities per device, the remaining
candidates are, in comparison to our 2020 attribution methodology, of higher significance for
subsequent manual verification. No device to which our new method is applicable was free of
potentially applicable CVEs with a high graded vulnerability score. The binary hardening, based
on exploit mitigation techniques, shows no improvements compared to 2020 as well. Only NX
and PIE are employed by more than 50 % of the observed executables and there is only one
vendor that applies Canaries on more than 5 % of its executables.

In the following, we give a detailed description of the data set and the individual analyses.
We compare our results to the 2020 study where possible, as some methods have changed.
The seven included vendors were randomly pseudonymised using the letters ABCDEFG in our
discussions and result presentation. However, they remain consistent between results.
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2 Evaluation Corpus

2 Evaluation Corpus

On the 31st of March 2022 we collected the latest firmware releases from seven vendors based
on the firmware that was available from their support pages and the devices that were currently
promoted on the vendors websites. All chosen vendors run well-recognized retail market brands
and offer a variety of budget, mid-tier, and high-end home routers – targeting various different
customer groups. Similar to 2020 we provide information on the set of analyzed firmware on
GitHub1.

For vendor selection, we created a list of prevalent vendors and distributors that sell, rent, or
lend their devices not necessarily exclusively, but also to European end users. Here, we attribute
relevance by perceived public brand recognition and home router portfolio. Furthermore, choices
are influenced by sample accessibility and technical limitations: We require access to firmware
images in order to analyze them and our tools must be able to unpack them, which is not possible
when they are encrypted and we do not know the secret key.

Aside of well-known retail market brands, we identify Internet Service Provider (ISP) devices as
an important sample group, as they are an intuitive choice for many end users. While many
vendors publicly serve firmware through their support pages, this is not the case for various ISP
devices. Unfortunately, many vendors that supply OEM routers to ISPs, but also sell their systems
independently, e.g., Huawei and Lancom, either encrypt their devices or do not make firmware
downloads available. To address this problem, we had various discussions with large ISPs to
achieve non-disclosure agreements so we can include missing samples and gather decryption
keys. Unfortunately, in all cases we either could not obtain an NDA or subsequently did not
receive firmware samples in time for this report. To avoid selectively picking analyzable samples
that are only available for a limited subset of ISPs and their corresponding devices, we decided
to exclude them from the data set to finish this report in a timely feasible manner. Furthermore,
we had to exclude large vendors like Huawei and Lancom due to missing or encrypted samples.
Consequently, the corpus does not claim to offer an accurate and representative market view of
German, European or international router sales or application. Nevertheless, we continue our
efforts with ISPs and vendors to add more firmware to future analysis corpora.

In total we analyzed 122 firmware samples. The analysis is set up based on FACT, a firmware
analysis tool that provides full firmware analysis automation from component extraction to at-
tribution of potential vulnerabilities. With FACT we were able to correctly extract 109 of the
122 firmware images for further analysis. For the CVE attribution an additional post-processing,
which is published in [2], and an alternative data source are applied. These are shortly described
in the related analysis section.

A short observation regarding operating systems and CPU architectures found in the corpus is
given in the following sections.

2.1 Operating Systems
Current home routers offer a complex set of features that includes internet access, wireless net-
working, routing and configuration. Common additional functionality includes network storage,
DECT-device and home automation device connection. In effect, vendors commonly develop
their firmware based upon software development kits (SDKs) provided by the chip vendors to

1https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2022/FKIE-HRS-2022.md

3

https://github.com/fkie-cad/embedded-evaluation-corpus/blob/master/2022/FKIE-HRS-2022.md


2 Evaluation Corpus

reduce redundant, hardware dependent work. The most common operating system (OS) pro-
vided through these SDKs still is embedded Linux, which we found on 109 of 122 devices at least
once. Some subcomponents like the internet access modem on the devices are complex enough
that they use an additional Linux OS. Other operating systems that we found were omitted from
further analysis as our methods do not apply to them.

2.2 CPU Architectures
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Figure 2.1: Distribution of CPU Architectures. Letters A-G represent pseudonymised vendors.

The CPU architecture does not have a direct impact on security, aside from possible limitations
in regards to binary hardening techniques. Our analysis shows that all devices where we could
identify a distinct architecture use either an ARM or a MIPS CPU. ARM and MIPS are the most
common CPU ISAs in complex embedded devices and offer a full set of features necessary for
security purposes. Among these, little-endian ARM was the most commonly observed architec-
ture. Interestingly, one device already uses a 64-bit CPU, which is not yet commonly adopted in
embedded devices.

In comparison to our 2020 data set, we observe a slight shift towards ARM architectures (from
45% in 2020 to 53% in 2022). Furthermore, there is a decline of MIPS usage (from 47% in 2020
to 31% in 2022). However, we also report a growing amount of ISAs that remain unknown due
to unpacking and analysis errors, which increased from 8.7% to 15.6%. A reason is obfuscation
in firmware images, e.g., encryption or newly introduced container formats that our tools can
not handle yet. Thus, it is possible that sample sizes for both ARM and MIPS clusters might vary
in reality.
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3 Evaluation

We investigate four security relevant features of the firmware images in our corpus. The analysis
is done in FACT1 with post processing to remove false analysis artifacts. Post processing steps
are unique to each feature and are described in the subsection of each feature. Based on the
resulting data we generate statistics and charts to visualize the state of each feature for all devices
and each vendor independently. The four security relevant features are:

1. Age of latest release. Does the vendor maintain all of their products regularly? In other
words, how often do they fix issues?

2. Operating System. How old are the OS versions powering the devices? How many critical
vulnerabilities are known for these versions?

3. Binary hardening. Do the vendors activate exploit mitigation techniques?

4. Login Credentials. Are there any hard-coded credentials that might allow unintended
access to the device?

The following subsections give detailed information for each feature. The subsections are struc-
tured as follows:

■ A description of the feature, the underlying analysis and its impact on security,

■ our findings in regards to the feature, both in summary for all devices and for each vendor
separately,

■ a statement on reliability of our results including limitations and verification strategies and

■ a comparison to the findings in the 2020 report.

For some analyses, an additional subsection includes information on feedback the vendors pro-
vided.

3.1 Age of Latest Release
Description

Frequent firmware releases provide proof that a vendor maintains their devices in terms of us-
ability, features, stability and security. Most router firmware is built heavily upon open source
components for the operating system, cryptographic libraries and network services. Thus, inde-
pendent of the internally developed firmware components, the collection of components face
a steady supply of updates and patches. Especially for stability and security, this implies that
practically every firmware can receive frequent updates to make use of the newest version of its
components. By extension, this also implies that outdated firmware necessarily misses updates
to these software components, many of which are critical to security. As analysis of software
versions shows that components are often not up to date at the time of a firmware release any-
way, conversely, frequent firmware updates do not imply improved security. But it does provide
the opportunity to close the most critical security issues in a timely manner and it provides the

1https://github.com/fkie-cad/FACT_core
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3 Evaluation
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Figure 3.1: Days since last release before 31st March 2022.

aforementioned proof of active maintenance by the vendor.

The analysis section provides a chart of the age of the most recent firmware updates in days
since the data collection deadline on the 31st of March (see Chapter 2) for each device. No post
processing was needed for this analysis. The Limitations section goes into some detail regarding
the reliability of inferences that can be taken from this statistic.

Findings

Figure 3.1 shows the results of our age analysis. Of the 122 routers in our data set, 95 received
a firmware update in the last 365 days, leaving 27 devices with a firmware older than one
year. Eight of the 27 updates are older than two years, with none being older than three. The
maximum age is 1050 days (about two years and 10.5 months). The mean age is 230 days,
meaning that the average device received an update in the last eight months. In that time frame
(13th August 2021 to 31st March 2022) 114 CVEs have been attributed to the Linux kernel, eight
to OpenSSL and dnsmasq and three to wpa_supplicant and hostapd, all software components
that are used by most Linux-based router firmware.

Five of the seven vendors show an arguably reasonable update cycle with at least half their
devices receiving an update within 127 days. The other two vendors have a median age of more
than 500 days for their devices, showing a distinct split in the two vendor groups. Reviewing
these numbers suggests that frequent updates are possible even for lower price products. One
device is listed at multiple points of sale for below 30 e and had received an update six days
before the data collection. Thus even though release cycles have shortened in recent years an
even higher frequency, e.g. aided by state of the art continuous deployment pipelines, should
be regarded as a necessary step to ensure the security of devices.
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3 Evaluation

Limitations

There are two primary limitations to the significance of the results for this feature: First, the age
is a snapshot that does not tell about the time between the current release and the previous
and upcoming releases. One edge case to represent this limitation is a router that received an
update on the 31st of March specifically. The age of zero days is not representative of the length
of the firmware update cycle for the device and the mean of 157 days for all devices of the
same vendor is probably a better guess for when to expect the next update. While for some
vendors a history of previous releases is public, making it possible to calculate the frequency
between versions, this is not possible for multiple vendors in our data set that only publish the
most recent firmware. Thus, this statistic cannot be applied broadly. Second, vendors do not
update all software components in every firmware release. While it can be assumed that highly
public vulnerabilities such as log4j will be covered in a security update after such an event, each
update might only partially address the sum of newly discovered bugs and vulnerabilities.

An additional limitation is the possibility that vendors do not supply all firmware updates through
their websites. It could be the case that minor updates are only published over-the-air directly
to the router or it could be that a vendor stops publicly offering the firmware altogether leaving
only the last public version online. We did not observe these two cases for the vendors in scope.

Comparison

As briefly noted on the Findings paragraph the release cycles of router firmware seem to have
shortened since the last data set was generated in 2020. The most notable difference is the
lower maximum ages observed in this report. In 2022 no firmware older than three years was
found. In 2020 there were 10 devices where that was the case, one having not received an
update for more than five years. One reason these outliers might have vanished is that device
vendors could have pruned end-of-life devices from their websites more diligently. That said,
the median, a number less affected by a small number of outliers, is also much lower this time,
reinforcing the observation.

The three vendors that were positively noted in 2020 show good results in this report, again.
Additionally, this year two other vendors join the group of these three vendors in showing rea-
sonable update latencies for most devices.

3.2 Operating System
Description

The operating system is an essential part of router firmware. It provides key elements like re-
source management, networking, protocols, drivers, and hardware abstractions to the vendor
applications that ultimately implement the functionality customers get in touch with. Linux2 is
open source, well maintained, customizable, and supports many hardware components, mak-
ing it a popular choice among vendors. Development costs are reduced with large communities
working on both the operating system and its software ecosystem.

As for most important software projects, Linux frequently receives reports of new software vul-
nerabilities. A recent example is Dirty Pipe3, which can be exploited to gain full system com-
promise due to the kernel having unrestricted privileges as the trust anchor of security policy
enforcement. Thus, keeping kernels up-to-date is pivotal to decrease risks of exploitation.

2
https://kernel.org

3
https://lolcads.github.io/posts/2022/06/dirty_pipe_cve_2022_0847/
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3 Evaluation

Our analysis of the operating systems targets two aspects: First, we identify the operating system
version of the Linux kernel to infer age and support status of the operating system. Second, we
attribute which vulnerabilities of the Linux kernel might apply to analyzed firmware. The analysis
makes use of the software detection functionality of FACT to find out which part of the firmware
contains the Linux kernel and which version of the kernel is used. Which kernel streams still
receive support and which reached End-Of-Life (EOL) can be inferred from the Linux Kernel
Mailing List4.

The attribution of CVEs is a more complicated task and received some research efforts since
the release of the last report in 2020. In discussions upon the release of the last report, it was
asserted that the method of simply attributing CVEs based on kernel version alone was not
sufficient to paint a realistic picture of the actual attack surface of the devices under analysis.
Mainly, two limitations were identified: Linux kernels are extremely heterogeneous as they are
highly configurable so that vulnerabilities, especially those found in drivers, might only apply to a
small subset of kernels. In addition, vendors can cherry-pick security patches from later releases
of the used kernel stream or even more recent kernel streams to close vulnerabilities that should
affect their kernel based on version.

The latter limitation is hard to bridge with static analysis, though a more thorough review of the
topic is given in the Limitations paragraph below. The former limitation was addressed through
an improved attribution method presented in detail in [2]. The improved method identifies the
components that are present in the kernel to select only the vulnerabilities that affect compo-
nents, which are used. As the research paper shows, most vulnerability descriptions for Linux
kernel CVEs in official CVE databases include which source code file is affected. This file refer-
ence can then be used to identify the affected component. The application of this new method
in combination with kernel-to-CVE assignment of the National Vulnerability Database (NVD) that
was also used in 2020 is marked as File-based Matching in the Findings. As an alternative for
kernel-to-CVE assignment, a second data source was introduced compared to the last report.
On linuxkernelcves.com5 (LKC), an automated method to identify affected kernel versions based
on patch commits is hosted. We include this data source in two additional statistics. First, simple
matching of kernel version to vulnerabilities with the LKC assignment is marked as Commit-based
Matching. Second, combining the LKC assignment with the new component based matching
method is marked as Combined. Due to the limitations of the above mentioned heuristics, which
are inherent to large-scale static analysis approaches, our CVE findings are to be understood as
candidates that require further careful, technical, and individual verification through vendors and
third-party security analysts.

Note that both CVE attribution methods are not applicable to all kernels. To identify the com-
ponents included in a Linux kernel for File-based Matching we rely on optional metadata that
can be removed from the kernel during compilation and thus is not always contained in the
firmware [2]. On the other hand, LKC provides the necessary data for Commit-based Matching
also only for some but not all Linux kernel streams. Consequently, we restrict our analysis of
kernel-to-CVE assignment to those kernels for which both methods were applicable.

Finally, in this report we are only interested in CVEs that pose a certain degree of real-world risk,
expressed through the Common Vulnerability Scoring System (CVSS)6 v3.x. As we found that a
considerable amount of Linux CVEs below a scoring of 7.0 are of rather theoretical nature, we
chose to only inspect CVEs exceeding said threshold. Thus we report findings of the severity
classes High (≥ 7.0) and Critical (≥ 9.0). Some old CVEs do not have a CVSS v3.x score. In these
cases, we fall back to CVSS v2.0.

4https://lkml.org/
5https://www.linuxkernelcves.com/
6https://nvd.nist.gov/vuln-metrics/cvss
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Figure 3.2: Linux Versions. Letters A-G represent pseudonymised vendors.

Findings

Figure 3.2 shows the Linux kernel versions our methods identify across all router images. Patch
levels are clustered into <Major>.<Minor> for illustrative purposes only. In total we found 121
Linux kernels in 109 images. For the remaining 13 firmware images we identify no kernel version
(denoted as unk.). As described in 2.1, complex systems can include multiple operating systems,
explaining the firmware images with multiple Linux kernels.

The version range is from 2.6 to a single occurrence of 4.19. The horizontal dashed line in Fig-
ure 3.2 separates EOL kernels (below line) from versions that are still actively maintained (above
line). Out of the 121 identified kernels, 93 do not receive any official updates anymore – roughly
77%. For reference, since the last 2.6 stream reached EOL, 12007 new Linux kernel CVEs were
assigned. Even when removing CVEs that do not affect a given kernel based on configuration,
the amount of effort necessary for cherry-picking patches for the remaining vulnerabilities has to
be assumed to be very high.

With 27 instances the long obsolete 2.6 stream still makes up about a fifth of the found kernels.
The oldest kernel in our data set is a single instance of 2.6.31 (Release: 20098). The remaining
findings have version 2.6.36 (Release: 20109). Another large cluster in the set of EOL Linux
versions is the Long Term Support stream 4.1 (deprecated 201810, 29 kernels).

As for actively maintained Linux kernels, note that the 4.4 stream, which was officially depre-
cated in Feb. 202211, is still included. This is because the Civil Infrastructure Platform continues
development for 10 to 20 more years12, as it is the first Super Long Term Support version. We
argue that this is a reasonable and resilient choice, which five of the seven different vendors
seem to adopt in different paces.

Figure 3.3 shows separate bar plots for each vendor to break down and compare kernel usage
distributions. All vendors except for one primarily build their firmware on top of EOL Linux
versions. However, there are small exceptions in our findings (1-3 kernels are still maintained).

Vendors that mark two ends of the usage spectrum are C and F. For vendor C, 17 out of 23
kernels are still in active development, with the majority of kernel versions being in Super Long
Term Support. Vendor F is on the other end of the spectrum: With 15 out of 36 findings, F

7https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
8https://lkml.org/lkml/2009/9/9/357
9https://lkml.org/lkml/2010/10/20/409

10https://www.spinics.net/lists/announce-kernel/msg02259.html
11https://lore.kernel.org/lkml/1643877137240249@kroah.com/
12https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance
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Figure 3.3: Linux Version Usage per Vendor. Letters A-G represent pseudonymised vendors.

represents the majority (56 %) of version 2.6 matches. Furthermore, there are 4 findings of
version 3.3 – which is no Long Term Support release that got discontinued the same year it was
introduced13.

Next, we present our results on heuristic and static Linux kernel CVE matching as described in [2].
Methods applicability is limited by two factors: First, the Commit-based Matching data set does
not support all version streams present in our firmware corpus. Second, our File-based Matching
can only succeed when we find a kernel build configuration file. Thus, we limit our observations
to the intersection of kernel findings analyzable by both methods.

13https://lkml.iu.edu/hypermail/linux/kernel/1206.0/01162.html
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Out of the 121 Linux kernel samples we identified, our methods are applicable to 61, distributed
across all considered vendors. Analyzed sample versions range from 3.10.104 to 4.19.151.

3.
4

3.
4.

10
3

3.
10

.1
4

3.
10

.1
04

3.
10

.1
08

3.
14

.7
7

3.
18

.2
0

3.
18

.4
4

4.
1.

27

4.
1.

51

4.
1.

52

4.
4.

60

4.
9.

19
8

4.
9.

23
1

4.
9.

25
0

4.
14

.1
17

4.
19

.1
51

Analyzed Firmware Linux Kernels, clustered by Version [x.y.z]

0

50

100

150

200

250

300

M
e
a
n
 K

e
rn

e
l 
C

V
E
 M

a
tc

h
e
s 

w
it

h
 C

V
S
S
 S

co
re

 >
=

 7
.0

 [
#

]

Commit-based Matching (linuxkernelcves.com) File-based Matching (NVD) Combined (Commit and File)

Figure 3.4: Number of heuristically attributed High Severity CVEs in Linux Kernel per Firmware
Image

In a first step, we cluster all kernels across vendors by Linux version, and then calculate the
mean count of positive CVE matches with a CVSS score ≥ 7.0. Figure 3.4 shows the results
for Commit-based Matching, File-based Matching, and the combination of both. Note that we
consider official patch levels and order kernels by version (left to right, ascending).

Both methods, including their combination, show a measurable and significant decline in CVE
matches when newer kernel versions are used. E.g., the Commit-based Matching yields means
of around 250 CVEs with CVSS ≥ 7.0 for kernel version 3.4.0, while for kernel version 4.19.151
the results report only 75. This is easily explainable: The older a kernel version, the more time
there is to find vulnerabilities. However, the implications of this seemingly trivial observation are
of high significance for router security: As of 2022, all analyzed versions in our data set that are
left of the 4.4.60 marker on the X-axis in Figure 3.4 are EOL. Consequently, they do not receive
official updates anymore.

In the next step, we cluster CVE findings by vendor and attribution method. Figure 3.5 shows
the results for all heuristically attributed CVEs with a CVSS ≥ 7.0. Each point represents a kernel
image, with one point each for the three matching methods. The colors correspond to the
methods. Horizontal lines mark the medians per vendor and method.

We find evidence of possible applicability for CVEs with at least High severity in each kernel we
analyzed, regardless of attribution method and vendor. The medians across all same-method
findings are 149 (Commit-based), 147 (File-based), and 58 (Combined). Differences between
vendors are observable in all matching methods. Most vendors have a high variance in the
Commit-based method, but show more narrow distributions for the other two methods. Looking
specifically at the combined method one vendor has a median of 37 High severity CVEs attributed
to its kernels, while another has a median 89 High severity CVEs. This difference is more than
100 %.
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Figure 3.5: Number of heuristically attributed High and Critical Severity CVEs per Linux ker-
nel, grouped in triplets of applied method per vendor. Letters A-G represent
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Figure 3.6: Number of heuristically attributed Critical Severity CVEs per Linux kernel, grouped in
triplets of applied method per vendor. Letters A-G represent pseudonymised vendors

In figure 3.6, we remove all High severity CVEs and show that for each analyzed kernel and
vendor, there are CVE findings of Critical severity (CVSS ≥ 9.0): For all vendors the count of
possibly applicable CVEs is within the range of 1 and 10 measured by File-based and Combined
techniques. The Commit-based Matching reports quantities between 11 and 23 for four of the
vendors.

As the low CVE numbers of vendor C directly correspond to C using more recent kernel streams
than most other vendors as shown in Figure 3.3, and Figure 3.4 corroborates the observation
that newer kernel streams contain less known vulnerabilities, more vendors should try to migrate
their development towards more recent kernel streams.
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Limitations

Similar to the other presented analyses, the presented operating system detection and CVE at-
tribution are limited by the common concerns of static analysis. The analysis is limited to the
firmware image and does not take the runtime environment and hardware into account.

For Linux version detection there is no guarantee that our search patterns catch all versions
correctly, which can lead to the possibility of mismatches. Furthermore, in firmware images where
multiple Linux kernels are found we deliberately chose to make no distinction between main
kernels and the ones running on subcomponents. Identifying the main kernel can be done by
manual analysis in some cases while in other cases it is not feasible in scale. We derived selection
methods across all 109 devices, i.e., by path or detected kernel version (prefer highest/lowest).
These delivered inconsistent and ambiguous results, which is why we discarded them14.

In terms of CVE attribution, we already discussed in our previous report [1] that there is a high
probability of false-positive matches as CVE databases might miss information or provide incor-
rect data on vulnerable versions [2, 3]. To mitigate this limitation we diversified our analysis com-
pared to 2020 to include both Commit- and File-based Matching techniques. Both techniques
are static approaches that can gather evidence for CVE applicability, but do not pose ultimate
proof – this is only possible through non-accessible vendor information or bug exploitation dur-
ing device runtime. The drawbacks of File-based Matching are documented in our paper [2], and
the drawbacks of Commit-based Matching can be found in the project’s Readme file15. Thus,
there is still a chance of false-positives and false-negatives, which is why we chose to not only
report combined results. Also, take note that our heuristic attribution methods only consider
61 out of 121 kernels due to technical limitations. Here, method applicability selects analyzed
kernels.

Finally, we have no insights on how and when vendors decide to cherry-pick or develop custom
patches. Thus, false-positives are probable, as vendors are known to apply such patches for
critical vulnerabilities.

Comparison

Compared to the 2020 results, vendors are still late in terms of meeting EOL deadlines and
we still find a significant amount of 2.6.x kernels in our data set. The newer and still actively
maintained kernel streams 4.9, 4.14, and 4.19 entered the stage in low quantities and the subset
of version 4.1 findings grew significantly. We observe that the usage of the Super Long Term
Support stream 4.4 grew from 7.5% to 16.5%. However, it is too early to say whether the 4.4
stream will be as popular among vendors in the future as the 2.6 stream was in the past.

As for known Linux kernel vulnerabilities, our methods changed drastically. Thus, there is no real
comparability to the findings we reported in 2020.

14Highest and lowest choices miss semantics on accurately guessing the actual main kernel, and

unpacking artifacts complicate selection where unpackers failed to correctly restore paths

from binary images. For example, we found two kernels in a device where no meaningful path

information could be extracted:

2.6.36 (File /261c593231aad31462fe8d11ca9a8a0fd506eee4e1416dd68548e5ec50ef5e45 77320105),

3.18.44 (File /0f954fd3e5cb23c21f6175fc23eb2402ed9620fd0a5c1505e6ccb90802e9b9af 5621713)
15https://github.com/nluedtke/linux_kernel_cves/blob/master/README.md
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3.3 Binary Hardening
Description

The idea of binary hardening techniques, also commonly referred to as exploit mitigations, is sim-
ple: Insert additional checks into the program execution to prevent programming errors turning
into security vulnerabilities. In theory, these techniques can even prevent exploitation of un-
known vulnerabilities, although they cannot prevent every exploitation attempt. However, even
in cases where binary hardening fails to prevent an attack, it often complicates exploit develop-
ment, which in turn might give users a little more time for updating the firmware of vulnerable
devices. There are many binary hardening techniques16 suitable to protect embedded devices.
Especially Linux-based devices can be protected easily, because the necessary tools are free and
tested in practice for years.

We analyze the usage of four different binary hardening techniques that all can be enabled or
disabled on a file-by-file basis. Our data shows the percentage of binary files per firmware sample
that were compiled with the corresponding binary hardening technique enabled.

The analyzed binary hardening techniques are:

■ Non-Executable Bit (NX) marks regions of the memory as non-executable. If an attacker
wants to execute his own code, he has to store it somewhere in the victim’s memory. The
idea of NX is to mark those regions of memory as non-executable that should not provide
executable code, while marking regions with executable code as read-only to prevent ma-
nipulation through an attacker. Depending on the processor architecture, this bit might
also be called XI or XN.

■ Position-Independent Executable (PIE) allows a program to be loaded at a random lo-
cation in memory. If mitigation techniques like NX are enabled, an attacker needs to reuse
legitimate program or library code already loaded into memory. With exploitation tech-
niques like return-oriented programming (ROP)17 an attacker might still achieve arbitrary
code execution. However, to use ROP the attacker needs to know where to find the code
in the victims memory. Since the operating system can randomize the code locations of
position-independent executables, exploit techniques like ROP are much harder to imple-
ment. We consider dynamic shared objects (DSO) and relocatable files (REL), too. They are,
by definition, position-independent.

■ RELocation Read-Only (RELRO) protects the Global Offset Table (GOT)18 against manipu-
lation during program runtime. The GOT maps memory locations of functions from shared
libraries or global variables, so that the program can find them. If an attacker can ma-
nipulate this mapping then he can redirect a legitimate function call to another function,
which in turn simplifies implementation of exploitation techniques like ROP. RELRO marks
the GOT as read-only after loading the program into memory to prevent manipulation by
an attacker during runtime. There is a partial RELRO19 mode protecting global variables
only and a full RELRO mode protecting the whole GOT. In our analysis, we count partial
mode and full mode as enabled.

■ Stack Canaries mitigate buffer overflow attacks. In C, you have to reserve space in mem-
ory to store incoming data. If the program does not check if the incoming data is larger
than the reserved space (called buffer), the incoming data may overwrite other data in

16https://7h3ram.blogspot.com/2012/07/exploit-mitigation-techniques-on-linux.html
17https://en.wikipedia.org/wiki/Return-oriented_programming
18https://en.wikipedia.org/wiki/Global_Offset_Table
19https://ctf101.org/binary-exploitation/relocation-read-only/
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the memory. This can involve data affecting the program execution enabling an attacker
to execute malicious code. The basic idea of canaries is to store a special byte sequence
called canary on specific positions in memory. These sequences are checked for changes
during runtime of the program, which can detect buffer overflow attacks for which the
corresponding vulnerability does not provide the attacker with fine-grained control over
the amount of overwritten memory. Note that this mitigation can still only detect some but
not all buffer overflow attacks.

Findings
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Figure 3.7: Percentage of Executables with NX Enabled per Firmware Image

The usage of the NX technique is quite common as can be seen in figure 3.7. When it is used,
vendors enable it on the majority of binaries, although some exceptions persist.

A rather unexpected result is that in 37 firmware samples we found no or almost no usage
of NX at all. Further investigation showed a strong correlation between no usage of NX and
usage of the MIPS CPU architecture. One possible explanation could be that these devices are
based on MIPS processors without support for this binary hardening technique. Since we did
not analyze the actual processor types built into the analyzed devices, we could not check this
theory. In first place, we saw few reasons why vendors would either turn off NX support during
compilation or deliberately stick to processors without support for such a well-known hardening
technique. However, in discussions with vendors, it was communicated that the choice of a
processor architecture is a rather complex task, as criteria like technical interfaces, processor
speeds, chip availability, and power consumption have to be considered.

Figure 3.8 shows that the usage of position-independent executables can be found in almost
all devices, but to a varying degree. For example, while the majority of firmware samples from
one vendor employ PIE on over 95% of executables, other vendors have PIE enabled for be-
tween 20% and 80% of all binaries for most devices, with the exact number varying wildly from
firmware to firmware. We investigated the two cases of firmware with a reported PIE usage of
0% and identified these as cases of incorrectly unpacked firmware. Thus, the reported numbers
for these two firmware images are incorrect.

In Figure 3.9 one can see a division between firmware where an effort was made to use RELRO,
i.e. using RELRO on at least 50% of all binaries, and firmware with usage rates of less than 10%
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Figure 3.8: Percentage of Executables with PIE Enabled per Firmware Image
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Figure 3.9: Percentage of Executables with RELRO Enabled per Firmware Image

for RELRO. One vendor apparently tries to enable RELRO on all their devices. Three other vendors
are negative outliers, with only one firmware sample combined between them containing a
significant number of RELRO-enabled binaries. Only one vendor has a significant number of
devices with usage ratios for RELRO between 10% and 50%.

The usage of stack canaries is still uncommon, as can be seen in figure 3.10. Again, there is one
positive outlier among the vendors with a visible effort for enabling stack canaries for the majority
of binaries on all devices. Other vendors only have a small number of devices where significant
amounts of binaries contain stack canaries. This shows that the vendors at least experiment with
consequent usage of stack canaries. However, the majority of firmware samples of these vendors
still contain less than 20% of binaries with stack canaries enabled.

Figure 3.11 summarizes the mean usage statistics of all binary hardening techniques for each
vendor as radar charts. Only one vendor can be seen to consistently enable NX, PIE, RELRO and
stack canaries on almost all devices. On the other hand, for three vendors the average device still
contains almost no binary hardening at all.
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Figure 3.10: Percentage of Executables with Canary Enabled per Firmware Image

Limitations

The used detection method is based on checksec20, which tries to find indicators for the usage
of specific mitigation techniques in binaries. However, as these are just indicators, there is a risk
of both false positive and false negative results.

Some sources of binaries with no enabled binary hardening even in firmware images that other-
wise used such techniques were quite frequently identified as analysis errors. These files usually
were artifacts of the unpacking process, which were either unpacked incorrectly or not part of
the Linux file system for the device.

Another common source for binaries without detected binary hardening were Linux kernel mod-
ules. This is due to limitations of checksec, which currently cannot detect whether mitigation
techniques similar to NX and RELRO are used for kernel modules.

Based on the last two reasons, our analysis underestimates the usage ratios for binary hardening
compared to reality. However, based on our observations, a relative comparison of firmware
images should still be valid.

Some binary hardening techniques need additional requirements on the execution environment
to work correctly. For example, position-independent executables need ASLR to be activated
in the Linux kernel (or KASLR for kernel modules). In addition, NX can only be enforced if the
processor of the device supports it, which is not always the case. Our analysis does not include
checks for those requirements, i.e. we did not check whether the processor types built into
actual devices do support NX or not.

Comparison

Since we changed the script used for detection of binary hardening after the last report in 2020
a quantitative comparison of concrete percentage numbers is not possible between both reports.
Instead, the following comparison focuses on qualitative differences in the results since 2020.

20https://github.com/slimm609/checksec.sh
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Figure 3.11: Mean of enabled binary hardening. Letters A-G represent pseudonymised vendors
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Compared to the firmware samples collected for the HRSR 2020 [1] not much has changed in
the usage statistics for the different binary hardening techniques.

Most notably, we did not encounter as many firmware samples with disabled NX in 2020. As
already noted above, one explanation could be that this is just a reflection of vendors using MIPS-
based processors without support for NX in their devices. Since the last report also included many
MIPS-based devices, this would imply that in 2020 binaries for such devices were still compiled
with NX enabled regardless of whether the actual processor supported it or not. However, we
could not verify this theory without information about the concrete processor types built into the
devices.

Apart from that, two vendors started to enable RELRO for a larger number of their firmware
images since 2020, while still having many devices where it is apparently disabled by default.
One can also see more vendors experimenting with the usage of stack canaries, but only on a
small number of devices.

In 2020, the report also included usage numbers for the FORTIFY_SOURCE technique. As we
could not verify the reliability of the used detection method for FORTIFY_SOURCE, we decided
to not include numbers for that binary hardening technique in this report.

3.4 Hard-coded Login Credentials
Description

Common security best practices include strong and unique password choices. In general, this
prevents attacks like password brute forcing and credential stuffing. For embedded devices Mirai
has successfully shown that widely deployed default credentials can be utilized for large-scale
attacks. This is addressed in the Embedded Top 10 Best Practices21 of OWASP where »[do] not
hard-code secrets such as passwords, usernames, tokens, private keys or similar variants« is part
of the 4th best practice. Now login credentials to the device are not the same as credentials used
for authenticating against a web-based device configuration. Web-based device configuration is
a commonly used feature where it can be assumed that a user (a) sets a safe password themselves
or (b) consciously decided to keep the default for usability reasons. Only the most technically
inclined users that know their way around a command line probably use login credentials. Thus,
it is unlikely that these credentials are changed. The impact of broken login credentials is further
discussed in the limitations section below.

The findings presented in the following are gathered by analyzing the Linux credential files found
in the firmware images and collecting all points where a password is set. As passwords are always
stored in some kind of hash, a second step tries to crack the password hash. The cracking is
attempted by applying two lists of common passwords with the tool John the Ripper22. The first
list contains 10,000 general-purpose passwords23, the second list contains passwords specifically
used in routers24.

21https://owasp.org/www-project-embedded-application-security/#div-project
22https://www.openwall.com/john/
23https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/

10k-most-common.txt
24https://routerpasswords.com
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Figure 3.12: Number of Hard-coded Credentials per Firmware Image
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Findings

We divide our analysis into hard-coded credentials in general and such credentials that are easy
to crack with proper tooling. Figure 3.12 shows the number of all hard-coded credentials found
per firmware image. The median already suggests that for all but one vendor at least half
of the firmware images do not contain any hard-coded credentials. The maximum number of
credentials comes out at four, which is found in eight images. 13 more firmware images contain
one, two or three sets of credentials, giving us 21 devices in whose firmware we identified hard-
coded credentials. While this number is encouraging, the second part of the analysis, shown
in Figure 3.13, is more concerning. Of the 21 devices with hard-coded credentials, 12 devices,
so more than half, contain passwords that are easy to crack. Meanwhile, the complexity of
passwords shows to be quite trivial as all cracked passwords are one of four options: admin,
root, password and one that is amazon.

Limitations

Assessing the impact of a credential finding is based on two additional observations: Is the
password overwritten during the firmware update process? Is there a running network service
that uses the credential? Additionally, if a password is not overwritten and a service actually uses
the password, an important distinction is if the service can be reached from external or internal
networks. In theory, these observations can be done in static analysis, but device initialization
is often too complex to gather all relevant information from it. Thus, even for the guessed
passwords in this analysis the two (plus one) observations have to be done to assess if the
password represents a security problem or if it is merely a bad practice.

Comparison

An interesting development since the last report is that the total number of hard-coded creden-
tials and the number of devices with at least one hard-coded credential has drastically decreased.
This might be a reaction to the EU specification for security in consumer IoT 25 which lists »No
universal default passwords« as first baseline requirement. At the same time, the number of
easily guessed passwords has increased. This trend is concerning, as a hard-coded password in
itself is not an issue as long as it is not known or cracked. Vendors should therefore prioritize
removing the trivial passwords in favor of removing hard-coded credentials — though removing
all is still the best option.

25https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/02.01.02_60/ts_103645v020102p.pdf
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List of Abbreviations

CPU Central Processing Unit
CPE Common Platform Enumeration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
DSO Dynamic Shared Object
EOL End-Of-Life
FACT Firmware Analysis and Comparison Tool
GOT Global Offset Table
IoT Internet of Things
ISA Instruction Set Architecture
LTS Long Term Support
NVD National Vulnerability Database
NX Non-Executable Bit
OEM Original Equipment Manufacturer
OS Operating System
OWASP Open Web Application Security Project
PIE Position-Independent Executable
REL RELocatable File
RELRO RELocation Read-Only
ROP return-oriented programming
XI eXecute Inhibit
XN eXecute Never
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A Appendix: Vendor Discussions

For transparency reasons, this appendix documents our extensive discussions with vendors, their
opposing views, but also their contributions to this report.

For each feature result we discussed in Section 3 and the corpus description in Section 2, there
is a subsection containing the corresponding discussions below. We report communication with
each vendor separately. Our statements are printed in cursive, vendor statements are in regular
font.

A.1 Evaluation Corpus
Vendor C

Vendor C states that, as a comparative test for the German market, the corresponding analysis
corpus would need to include samples for ISP devices in order to achieve market representative-
ness. With respect to market share, the third-party vendors included in our corpus could not
be described as large, but rather as marginal or minor. In particular, vendor C exemplifies that
we would not include any routers from Deutsche Glasfaser or Huawei, Speedport devices from
Deutsche Telekom, O2’s Homebox, or Easybox and Station models from Vodafone. Thus, vendor
C claims that we would not consider over 50 % of the German market, which would significantly
skew the overall picture of router security in Germany.

Our observation that ISP firmware samples are not widely accessible through public means was
communicated to Vendor C. In return, Vendor C has sent us exemplary links to publicly accessible
ISP firmware samples, e.g., for the Digitalisierungsbox by Deutsche Telekom and some Vodafone
Easybox devices. They point out that these examples would contradict our observation in general.
The mentioned data would also be analyzable by our FACT tool.

The vendor asks for justification on the omission of the previously sent samples (and ISPs in
general), as well as a a more objective and plausible justification for corpus construction and
included vendor relevance. Vendor C asks us to make sure that the reader understands that our
results would not be representative.

The vendor does not agree with the currently implemented accommodations to further clarify
non-representativeness in this report.

We explained that the Home Router Security Report is not a comparative test for the german market, and we do not
claim market representativeness. Regarding the ISP firmware samples, we refer to our arguments in Section 2 and
would like to emphasize our efforts to close NDAs with ISPs. We still believe that our data provides valuable insights
a) on a device level, and b) in relative comparison among included vendors.

Other Vendors

Vendors A, B, D, E, F, and G did not comment on the evaluation corpus.
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A.2 Age of Latest Release
Vendors A, B, C, D, E, F, and G did not comment on the findings from this metric.

A.3 Operating Systems
Vendor C

CVE Attribution Methods Accuracy, Manual Verification, and alternative ground truth.

Vendor C states that our automated static CVE attribution heuristics would generate false-
positive rates of at least 84 % for their devices. Reasons for such high false-positive rates would
include vendors cherry-picking official patches, incorrect kernel version ground truth by the NVD,
and actually present vulnerable code that would, however, be irrelevant for the use case. As for
incorrect ground truth, they proposed that we should use linuxkernelcves.com instead of the
NVD after sighting our provided result set. Said source would be more suitable for Linux CVEs,
as the project tracks CVE fix references in code commit messages. Furthermore, vendor C asks
the FKIE for manual verification of at least sampled data from the result CVE set.

Due to missing information and no suitable environments for qualitative dynamic analyses on this subject, we can not
verify vendor C’s claim of at least 84 % false-positive rates with reasonable efforts.

We communicated to the vendor that we could not entirely build our analysis on top of the proposed linuxkernel-
cves.com data set. It is, like our own approach [2], a static analysis heuristic that a) introduces another category of
false-positives and false-negatives (automation might misidentify commits), and b) does not support all (EOL) kernel
streams we encounter in the data set. Furthermore, in contrary to [2], the actual code has not yet been published
and, thus, can not be reviewed.

We agree with vendor C that Linux kernel CVE attribution is especially hard due to unsound ground truth. Thus, we
developed the previously mentioned attribution method, and decided to report linuxkernelcves.com results alongside
the NVD results, but not exclusively due to the considerations stated above.

Identification of security-relevant Linux kernels.

Vendor C states that in two analyzed firmware samples, our CVE attribution would not consider
the correct main system kernel, which would be of version 4.4.60 for both. They state that these
analyzed kernels would be associated to modem subsystems. Vendor C asks us to re-do our
analysis and manually alter Figures 3.4, 3.5, and 3.6 in such a way that the correct kernels would
be considered for the vendor. Alternatively, they ask us to publicly justify why we did not alter
the data regardless of their provided information on main- and subsystems for their devices in
particular.

We found three versions (3.14.26, 4.4.60, 4.14.117) in one firmware, and two versions (3.18.20, 4.4.60) in the
other. Given the limitations, our methods could neither consider 4.4.60, nor 3.14.26 because the required meta
data was not found. We did not distinguish between Linux kernels of the main system and subcomponents, and did
not filter the kernel subset for CVE attribution by other means than technical limitations. This includes that method
requirements must be fulfilled as well: If there is a kernel missing in the CVE results, the kernel configuration was not
detected and we can not apply attribution methods. Furthermore, we do not compare devices, but observe different
kernel usage between vendors and report potentially applicable, publicly known software flaws.

We did not alter the result set or their presentation for any vendor. This is because we had to weight result accuracy
against reproducibility and comprehensibility. We opted to prioritize the latter ones and document result inaccuracies
in the method limitations and vendor discussions.

25



A Appendix: Vendor Discussions

Vendor E

Vendor E mentions that they identify room for improvement in terms of using newer kernel ver-
sions and report not further specified quantities of false-positives yielded by our CVE attribution
heuristics. While they would put in efforts to track and fix applicable CVEs in-house, kernel usage
would be ultimately bound to the chip vendor SDKs in use for router development.

We acknowledge the existence of false-positives (but also missing false-negatives) in our result set, as they are inherent
to static analysis methods. Yet, usage of deprecated kernels in chip vendor SDKs only moves the observed issue away
from router vendors to their suppliers and does not resolve the issue of decentralized, high effort, and potentially
error-prone kernel security management per vendor.

Other Vendors

Vendors A, B, D, F, and G did not comment on the findings from this metric.

A.4 Binary Hardening
Vendor C

NX-Bit and MIPS processors.

Vendor C would like to clarify that a vendor’s decision for or against usage of processors with
non-executable memory features would not be arbitrary and would not be a function over chip
pricing. Aside of security features, the processor’s technical capabilities would just be as impor-
tant in order to meet actual application requirements. Exemplary SoC criteria would be available
interfaces, processor speeds, power usage, and chip availability. Especially the last would have
gained significant importance due to recent chip shortages. Consequently, the semiconductor
market would only offer limited choices for vendors. Furthermore, vendor C states that develop-
ing products on a single architecture would be preferable, but not practicable. Thus, they would
rely on a variety of architectures, as they would identify benefits and disadvantages for each.

As for MIPS devices in particular, vendor C observes that the XI-bit would just have been intro-
duced in the recent generation of MIPS processor cores, e.g., MIPS32 1074 Kc/f. However, there
would not yet be any SoC available that could be suitable for router usage. Together with our
provided data, they conclude that the 8 out of 17 data points with 0 % NX usage correspond to
the MIPS devices in their portfolio.

We report that none except for one of the MIPS-based firmware samples in our corpus shows binary findings with
XI enabled – which might be an indicator of general absence of such functionality. However, our firmware corpus is
not representative and we do not have expert knowledge on the semiconductor market, which is why we can not
objectively verify the statements of vendor C.

Although we understand the vendor’s comments on platform choice, we still regard it as desirable to choose SoCs
with binary hardening features, as some have proven to satisfy consumer router application requirements as well. E.g.,
the alternative of ARM-based processors is something that vendors also have been using in router devices for years
and our observations from 2020 and this report’s iteration back this view (see Figures 2.1 and 3.7). On the other hand,
we follow up on vendor C’s stated interface-requirements and also consider that a possible factor affecting vendor
choices might be that components for novel communication techniques could generally reach certain platforms faster
than others or not at all.

Finally, we observe that the XI feature is part of the MIPS32 architecture specification since 20151. This leads to the
question of why demand and supply have not yet affected availability of XI-enabled MIPS SoCs suitable for router

1https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00090-2B-MIPS32PRA-AFP-06.02.pdf
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appliances after more than seven years.

Used checksec script not suitable for kernel modules.

PIE – Vendor C contributes that the PIE binary hardening technique would not be applicable
to kernel modules and shared objects because their code’s position-independence would be
designated by the terms DSO and REL.

As the used checksec tool detects and consolidates these features in the PIE check2, we updated the technique’s
description in Section 3.3 to avoid further misunderstandings.

NX/XI – Vendor C contributes that non-executable stacks would not be designated as NX, but as
XI in MIPS specifications.

We updated the NX feature description to improve clarity on this point, as our methods cover this case: Checksec
uses readelf3, which in turn is able to detect the MIPS XI and the ARM XN bits. They are reported under the umbrella
term ’NX’.

RELRO and NX in kernel space – Vendor C identifies an error in our methods, as we did not prune
executable kernel space objects from our RELRO and NX result set. Both NX and RELRO are user
space concepts that are not applicable to the kernel space. Thus, checksec would always report
for the corresponding objects that the RELRO and NX mitigations are disabled. The vendor does
not agree that we respond by documenting the methodical error in the corresponding limitations
of Section 3.3. Instead, C asks us to revise our analysis and alter the Figures 3.7, 3.9, and 3.11
in such a way that Linux kernel modules are excluded from the set of analyzed binaries in the
RELRO and NX dimensions.

We verify both our raw data and the checksec tool and can confirm the observation of vendor C. Yet, we do not
follow our decision to prioritize reproducibility and comprehensibility before result accuracy. Also, our metrics do not
categorically introduce any bias that would favor certain vendors over others. We believe it is more transparent to
report all tooling results as they are and that the error is sufficiently documented in the methods limitations.

Other Vendors

Vendors A, B, D, E, F, and G did not comment on the findings from this metric.

A.5 Hard-coded Credentials
Vendor C

Vendor C states that it would make a significant difference whether our findings would reside
in the main system or a Linux subsystem of, e.g., an integrated WiFi or cellular component. The
vendor criticizes that our heuristics need to be able to differentiate between Linux systems that
would be of relevance for security.

We refer to the discussed limitations in Section 3.4 and argue that some subsystems may, too, expose functionality
that is affected by some hard-coded credentials. Furthermore, the existence of such credentials, even if not directly
usable without prior compromise, might be beneficial in scenarios to locally elevate privileges in post-exploitation.
We would not categorically dismiss all subsystem findings due to the vendor’s statement above and rather report all
results as they are.

2https://github.com/slimm609/checksec.sh/blob/932b9922d0f1d8bb48cf13453fd5d60157461ae0/src/

functions/filecheck.sh#L37-L49
3https://man7.org/linux/man-pages/man1/readelf.1.html
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Vendor E

Vendor E confirmed that our findings correctly identified one device’s firmware that contains
security-relevant hard-coded credentials. The affected version was updated between the data
collection and analysis stages of this report.

The vendor shared the update with us and we were able to verify the fix through static comparison with the older
version.

Other Vendors

Vendors A, B, D, F, and G did not comment on the findings from this metric.
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